Async PHP

via PCNTL extension

@molsavsky1

shipmonk

Speaker

e Michael OlSavsky
o 4years in ShipMonk
o Mostly DX/ Internals across all teams, Technical hiring
o Social
m github.com/olsavmic

m @molsavsky

shipmonk

What? Why?

Async PHP via PCNTL extension

shipmonk

Q/A: sli.do/shipmonk

https://sli.do/shipmonk

shipmonk

Problem instance 1 TIS O o

e Long-running CLI a
g g pp \@ consumer C

e Persistent connection

e Some async tasks may take minutes to complete

e Butwe need to keep the connection alive on both sides

Specifically for us
e Symfony application
e Consuming and producing messages via RabbitMQ (AMQP protocol)

shipmonk

RabbitMQ Heartbeats

shipmonk

Too short heartbeats

b raouit

Idle connection

&

Message 1

A\
consumer

E Rabbit @?Messagm

D G LLRETEEPIEPPED

RabbitMQ assumes connection is closed

o

T \ 4
consumer A consumer B

Message 1 Message 1

Message processed twice!

shipmonk

Too long heartbeats

RtV 5

Idle connection

Message 1

\
consumer

Braovitvo 5

RabbitMQ thinks consumer
is processing the message

@ consumer (dead)

Dead time, message waiting!

shipmonk

Goals

1. Detect broken connections and automatically perform failover
Prevent termination of idle connections

Introduce minimum business code changes

H DN

Minimum performance overhead

shipmonk

10

Manual solution

foreach (Sorders as Sorder) {
Sthis->someFacade->someCallTakingTooLong (Sorder) ;

// this sends heartbeat to all RabbitMQO connections
$this->connectionManager->pingAll () ;

shipmonk

11

Manual solution

public function dispatchImmediately (DispatchableConsumerMessage Smessage) : void
{
try {
/** @throws AMQPRuntimeException */
Sthis->producer->publish (Smessage) ;

} catch (AMQPHeartbeatMissedException S$Se) ({
$this->logger->logInfoMessage ('AMQP Reconnecting after missed heartbeat');
$this->connection->reconnect () ;

Sthis->producer->publish (Smessage) ;

shipmonk

12

X Manual Solution

Spreads across the codebase
Prevents the problem only locally

Issues will occur until someone proactively fixes the problem

shipmonk

13

Can we do it async?

shipmonk

14

Async PHP

Event-loop based solutions

@)

@)

ReactPHP

AMPHP

pcntl_fork

@)

parallel extension (https://www.php.net/manual/en/book.parallel.php)

@)

O

spatie/async

Message passing via channels

Requires --enable-zts’

https://reactphp.org/
https://amphp.org/
https://github.com/spatie/async
https://www.php.net/manual/en/book.parallel.php

shipmonk

15

PCNTL extension

e Unix-like Process Control (https://www.php.net/manual/en/intro.pcntl.php)
e Supported by CLI and CGl, not FPM or mod_php
e SIGINT, SIGTERM, SIGKILL, ...

Support for:
e Process management

e System signal handling

pcntl async signals (true) available since PHP 7.1

https://www.php.net/manual/en/intro.pcntl.php

shipmonk

Async tasks
with PCTNL Alarm

shipmonk

17

const INTERVAL IN SECONDS = 5;

pcntl async signals(true);

pcntl signal(SIGALRM, static function ():

pcntl alarm(INTERVAL IN SECONDS) ;
1)

pcntl alarm(INTERVAL IN SECONDS) ;

void {

shipmonk

18

pcntl async signals(true);

pcntl signal(SIGALRM, static function
{

//

Sconnection->checkHeartBeat() ;

e

pcntl alarm($interval);

1)

pcntl alarm($interval);

()

use

(Sconnection,

Sinterval) :

void

shipmonk

19

Restrictions

Beware

Signal handlers are blocking the main execution
o Set strict timeouts for code running inside the handlers!
Blocking native calls (curl, PDO::exec, ...) are uninterruptible by default
o Set sane timeouts for all application code!

Interrupted sleep ($seconds) does not resume

shipmonk

20

Interrupt-safe sleep

/*x
* T
*/
pub
{

/ * *

/
*/
pub
{

e

Interrup

4+
C

afe sleep

0))

lic static function sleep(int $seconds): void
do {

$seconds = sleep ($seconds) ;
} while (Sseconds !== 0);

nterrupt safe usleep
lic static function usleep(int $microseconds) : void
$seconds = (int) (Smicroseconds / self::MICROSECONDS IN SECOND) ;

self::sleep($Sseconds) ;

// usleep doesn't return remaining microseconds so we must use only for

usleep ($microseconds - $seconds * self::MICROSECONDS IN SECOND) ;

4+

h

tne

g
S

1
L

7
1

b-second part

shipmonk

21

PCNTL-based solution

Almost no code modification - developers don’t need to worry

Zero-performance cost (with pcntl async signals (true))

shipmonk

22

Problem instance 2

Long-running CLI app

Releasing acquired resources on shutdown

Specifically

Symfony application

Application acquires atomic lock with TTL via Redis

shipmonk

23

é > Pod 1
Await for lock 1

Our testing team was
complaining the most

Node scale-down
............ @

Awaits until TTL expires

shipmonk

24

Graceful shutdown
with signal handlers

shipmonk

What is Graceful Shutdown?

e “Graceful shutdown is a process of shutting down an applicationin a
way that all pending tasks are either completed or intentionally

rejected.”

e The configuration for web-server is completely different from CLI
o Load-balancers
o Nginx
o PHP-FPM

o @Great article — https://tinyurl.com/graceful-shutdown-fpm

https://tinyurl.com/graceful-shutdown-fpm

shipmonk

26

Sthis->semaphore->runOrWait (
SharedLockKey ::createPickingJdobsLockKey (),
function () use (Smessage): void {
Sthis->someFacade->someActionToRunUnderLock (
// What if the app stops inside?
Smessage ->getPickingJobIds ()
) ;
b
maxWaitTimeInSeconds: 10,
ttlInSeconds: 15,

shipmonk

27

How Kubernetes kills pods

e All containers in a pod receive SIGTERM first
e Default 30s period for shutdown procedures
o Configurable
o SIGKILL after grace period
e OOM is always SIGKILL &

shipmonk

28

pcntl_async_signals(enable: true);

pentl_signal(signal: SIGUSR1, function () { \522377
throw new Exception(message: 'SIGUSR1'); (o) C?//7
5% tO,O N

function foo()

{
try {
posix_kill(posix_getpid(), signal: SIGUSR1);
} catch (Exception $e) {
echo "Caught exception: {$e->getMessage()}\n";
echo $e->getTraceAsString();
}
}
foo();

Caught exception: SIGUSRI

#0 async-signals/scripts/callstack.php(12) :
#1 async-signals/scripts/callstack.php(19):
#2 {(main}

{closure} (30, Array)
foo ()

shipmonk

29

In our semaphore implementation...

try |

return $callback ($SacquiredLocks) ;

} finally {

}

Sthis->releaseAcquiredLocks (SacquiredLocks) ;

During app initialization...

pcntl async signals(true);

pcntl signal (SIGTERM, static function

1) ;

throw InterruptedBySignalException

() : never {

::sigterm() ;

shipmonk

30

shipmonk-rnd/pcntl-signal-manager

e Nicer API
e Object-scoped signal handlers (without memory leaks!)
e Multiple signal handlers for single signal

e Manages previously registered handlers

Soon:
e RepeatingTask API (SIGALRM)

shipmonk

31

summary

e PCNTL signal handlers are a quick win
o Reliable
o No business code changes

e |Ifit doesn’t work in your application, there are probably some other issues
o Typically missing timeouts for blocking calls

e Do not combine PCNTL handlers with event-loop based solutions

e Signal handlers are blocking!

e Signal handlers run on top of current execution stack

<
Questions?

sli.do/shipmonk

https://sli.do/shipmonk

~ ~

~a

Thank you!

github.com/shipmonk-rnd

https://github.com/shipmonk-rnd

