
Async PHP
via PCNTL extension

@molsavsky1

Speaker
● Michael Olšavský

○ 4 years in ShipMonk

○ Mostly DX / Internals across all teams, Technical hiring

○ Social

■ github.com/olsavmic

■ @molsavsky1

2

What? Why?
Async PHP via PCNTL extension

3

Q/A: sli.do/shipmonk

4

https://sli.do/shipmonk

Problem instance 1
● Long-running CLI app

● Persistent connection

● Some async tasks may take minutes to complete

● But we need to keep the connection alive on both sides

Specifically for us

● Symfony application

● Consuming and producing messages via RabbitMQ (AMQP protocol)

5

RabbitMQ Heartbeats

6

Too short heartbeats

7 Message processed twice!

Too long heartbeats

8 Dead time, message waiting!

Goals

1. Detect broken connections and automatically perform failover

2. Prevent termination of idle connections

3. Introduce minimum business code changes

4. Minimum performance overhead

9

Manual solution

foreach ($orders as $order) {
 $this->someFacade->someCallTakingTooLong($order);

 // this sends heartbeat to all RabbitMQ connections
 $this->connectionManager->pingAll();
}

10

Manual solution

public function dispatchImmediately(DispatchableConsumerMessage $message): void
{
 try {
 /** @throws AMQPRuntimeException */
 $this->producer->publish($message);
 } catch (AMQPHeartbeatMissedException $e) {
 $this->logger->logInfoMessage('AMQP Reconnecting after missed heartbeat');
 $this->connection->reconnect();
 $this->producer->publish($message);
 }
}

11

❌ Manual Solution

● Spreads across the codebase

● Prevents the problem only locally

● Issues will occur until someone proactively fixes the problem

12

Can we do it async?

13

Async PHP

● Event-loop based solutions

○ ReactPHP

○ AMPHP

● pcntl_fork

○ spatie/async

● parallel extension (https://www.php.net/manual/en/book.parallel.php)

○ Message passing via channels

○ Requires `--enable-zts`

14

https://reactphp.org/
https://amphp.org/
https://github.com/spatie/async
https://www.php.net/manual/en/book.parallel.php

PCNTL extension

● Unix-like Process Control (https://www.php.net/manual/en/intro.pcntl.php)

● Supported by CLI and CGI, not FPM or mod_php

● SIGINT, SIGTERM, SIGKILL, ...

Support for:

● Process management

● System signal handling

pcntl_async_signals(true) available since PHP 7.1

15

https://www.php.net/manual/en/intro.pcntl.php

Async tasks
with PCTNL Alarm

16

const INTERVAL_IN_SECONDS = 5;

pcntl_async_signals(true);

pcntl_signal(SIGALRM, static function (): void {
 pcntl_alarm(INTERVAL_IN_SECONDS);
});

pcntl_alarm(INTERVAL_IN_SECONDS);

17

pcntl_async_signals(true);

pcntl_signal(SIGALRM, static function () use ($connection, $interval): void
{
 // ...
 $connection->checkHeartBeat();
 // …

 pcntl_alarm($interval);
});

pcntl_alarm($interval);

18

Restrictions

Beware

● Signal handlers are blocking the main execution

○ Set strict timeouts for code running inside the handlers!

● Blocking native calls (curl, PDO::exec, …) are uninterruptible by default

○ Set sane timeouts for all application code!

● Interrupted sleep($seconds) does not resume

19

Interrupt-safe sleep
/**
* Interrupt safe sleep
*/
public static function sleep(int $seconds): void
{
 do {
 $seconds = sleep($seconds);
 } while ($seconds !== 0);
}

/**
* Interrupt safe usleep
*/
public static function usleep(int $microseconds): void
{
 $seconds = (int) ($microseconds / self::MICROSECONDS_IN_SECOND);

 self::sleep($seconds);
 // usleep doesn't return remaining microseconds so we must use only for the sub-second part
 usleep($microseconds - $seconds * self::MICROSECONDS_IN_SECOND);
}

20

✅ PCNTL-based solution

● Almost no code modification - developers don’t need to worry

● Zero-performance cost (with pcntl_async_signals(true))

21

Problem instance 2

● Long-running CLI app

● Releasing acquired resources on shutdown

Specifically

● Symfony application

● Application acquires atomic lock with TTL via Redis

22

23

Node scale-downsDeployments

Our testing team was
complaining the most

Graceful shutdown
with signal handlers

24

What is Graceful Shutdown?

● “Graceful shutdown is a process of shutting down an application in a

way that all pending tasks are either completed or intentionally

rejected.”

● The configuration for web-server is completely different from CLI

○ Load-balancers

○ Nginx

○ PHP-FPM

○ Great article → https://tinyurl.com/graceful-shutdown-fpm

25

https://tinyurl.com/graceful-shutdown-fpm

$this->semaphore->runOrWait(
 SharedLockKey::createPickingJobsLockKey(),
 function () use ($message): void {
 $this->someFacade->someActionToRunUnderLock (
 // What if the app stops inside?
 $message ->getPickingJobIds()
);
 },
 maxWaitTimeInSeconds: 10,
 ttlInSeconds: 15,
);

26

How Kubernetes kills pods

● All containers in a pod receive SIGTERM first

● Default 30s period for shutdown procedures

○ Configurable terminationGracePeriod

○ SIGKILL after grace period

● OOM is always SIGKILL 😢

27

28

Signal handler is executed

on top of current stack

Caught exception: SIGUSR1
#0 async-signals/scripts/callstack.php(12): {closure}(30, Array)
#1 async-signals/scripts/callstack.php(19): foo()
#2 {main}

29

try {
 return $callback($acquiredLocks);
} finally {
 $this->releaseAcquiredLocks($acquiredLocks);
}

In our semaphore implementation…

pcntl_async_signals(true);

pcntl_signal(SIGTERM, static function (): never {
 throw InterruptedBySignalException::sigterm();
});

During app initialization…

shipmonk-rnd/pcntl-signal-manager

● Nicer API

● Object-scoped signal handlers (without memory leaks!)

● Multiple signal handlers for single signal

● Manages previously registered handlers

Soon:

● RepeatingTask API (SIGALRM)

30

Summary

● PCNTL signal handlers are a quick win

○ Reliable

○ No business code changes

● If it doesn’t work in your application, there are probably some other issues

○ Typically missing timeouts for blocking calls

● Do not combine PCNTL handlers with event-loop based solutions

● Signal handlers are blocking!

● Signal handlers run on top of current execution stack

31

Questions?
sli.do/shipmonk

https://sli.do/shipmonk

Thank you!
github.com/shipmonk-rnd

https://github.com/shipmonk-rnd

