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What? Why?

Async PHP via PCNTL extension
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Q/A: sli.do/shipmonk



https://sli.do/shipmonk
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Problem instance 1 TIS O o

e Long-running CLI a
g g pp \@ consumer C

e Persistent connection

e Some async tasks may take minutes to complete

e Butwe need to keep the connection alive on both sides

Specifically for us
e Symfony application
e Consuming and producing messages via RabbitMQ (AMQP protocol)
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RabbitMQ Heartbeats
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Too short heartbeats
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Too long heartbeats
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Goals

1. Detect broken connections and automatically perform failover
Prevent termination of idle connections

Introduce minimum business code changes

H DN

Minimum performance overhead
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Manual solution

foreach (Sorders as Sorder) {
Sthis->someFacade->someCallTakingTooLong (Sorder) ;

// this sends heartbeat to all RabbitMQO connections
$this->connectionManager->pingAll () ;
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Manual solution

public function dispatchImmediately (DispatchableConsumerMessage Smessage) : void
{
try {
/** @throws AMQPRuntimeException */
Sthis->producer->publish (Smessage) ;

} catch (AMQPHeartbeatMissedException S$Se) ({
$this->logger->logInfoMessage ('AMQP Reconnecting after missed heartbeat');
$this->connection->reconnect () ;

Sthis->producer->publish (Smessage) ;
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X Manual Solution

Spreads across the codebase
Prevents the problem only locally

Issues will occur until someone proactively fixes the problem
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Can we do it async?
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Async PHP

Event-loop based solutions

@)

@)

ReactPHP

AMPHP

pcntl_fork

@)

parallel extension (https://www.php.net/manual/en/book.parallel.php)

@)

O

spatie/async

Message passing via channels

Requires --enable-zts’


https://reactphp.org/
https://amphp.org/
https://github.com/spatie/async
https://www.php.net/manual/en/book.parallel.php
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PCNTL extension

e Unix-like Process Control (https://www.php.net/manual/en/intro.pcntl.php)
e Supported by CLI and CGl, not FPM or mod_php
e SIGINT, SIGTERM, SIGKILL, ...

Support for:
e Process management

e System signal handling

pcntl async signals (true) available since PHP 7.1


https://www.php.net/manual/en/intro.pcntl.php
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Async tasks
with PCTNL Alarm
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const INTERVAL IN SECONDS = 5;

pcntl async signals(true);

pcntl signal(SIGALRM, static function ():

pcntl alarm(INTERVAL IN SECONDS) ;
1)

pcntl alarm(INTERVAL IN SECONDS) ;

void {
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pcntl async signals(true);

pcntl signal(SIGALRM, static function
{

//

Sconnection->checkHeartBeat() ;

e

pcntl alarm($interval);

1)

pcntl alarm($interval);

()

use

(Sconnection,

Sinterval) :

void
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Restrictions

Beware

Signal handlers are blocking the main execution
o Set strict timeouts for code running inside the handlers!
Blocking native calls (curl, PDO::exec, ...) are uninterruptible by default
o Set sane timeouts for all application code!

Interrupted sleep ($seconds) does not resume
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Interrupt-safe sleep

/*x
* T
*/
pub
{

/ * *

/
*/
pub
{

e

Interrup
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C

afe sleep

0))

lic static function sleep(int $seconds): void
do {

$seconds = sleep ($seconds) ;
} while (Sseconds !== 0);

nterrupt safe usleep
lic static function usleep(int $microseconds) : void
$seconds = (int) (Smicroseconds / self::MICROSECONDS IN SECOND) ;

self::sleep($Sseconds) ;

// usleep doesn't return remaining microseconds so we must use only for

usleep ($microseconds - $seconds * self::MICROSECONDS IN SECOND) ;
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PCNTL-based solution

Almost no code modification - developers don’t need to worry

Zero-performance cost (with pcntl async signals (true))



shipmonk

22

Problem instance 2

Long-running CLI app

Releasing acquired resources on shutdown

Specifically

Symfony application

Application acquires atomic lock with TTL via Redis
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é .................. > Pod 1
Await for lock 1

Our testing team was
complaining the most

Node scale-down
............ @

Awaits until TTL expires
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Graceful shutdown
with signal handlers
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What is Graceful Shutdown?

e “Graceful shutdown is a process of shutting down an applicationin a
way that all pending tasks are either completed or intentionally

rejected.”

e The configuration for web-server is completely different from CLI
o Load-balancers
o Nginx
o PHP-FPM

o @Great article — https://tinyurl.com/graceful-shutdown-fpm



https://tinyurl.com/graceful-shutdown-fpm
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Sthis->semaphore->runOrWait (
SharedLockKey ::createPickingJdobsLockKey (),
function () use (Smessage): void {
Sthis->someFacade->someActionToRunUnderLock (
// What if the app stops inside?
Smessage ->getPickingJobIds ()
) ;
b
maxWaitTimeInSeconds: 10,
ttlInSeconds: 15,
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How Kubernetes kills pods

e All containers in a pod receive SIGTERM first
e Default 30s period for shutdown procedures
o Configurable
o SIGKILL after grace period
e OOM is always SIGKILL &
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pcntl_async_signals( enable: true);

pentl_signal( signal: SIGUSR1, function () { \522377
throw new Exception( message: 'SIGUSR1'); (o) C?//7
5% tO,O N

function foo()

{
try {
posix_kill(posix_getpid(), signal: SIGUSR1);
} catch (Exception $e) {
echo "Caught exception: {$e->getMessage()}\n";
echo $e->getTraceAsString();
}
}
foo();

Caught exception: SIGUSRI

#0 async-signals/scripts/callstack.php(12) :
#1 async-signals/scripts/callstack.php(19):
#2 {(main}

{closure} (30, Array)
foo ()
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In our semaphore implementation...

try |

return $callback ($SacquiredLocks) ;

} finally {

}

Sthis->releaseAcquiredLocks (SacquiredLocks) ;

During app initialization...

pcntl async signals(true);

pcntl signal (SIGTERM, static function

1) ;

throw InterruptedBySignalException

() : never {

::sigterm() ;
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shipmonk-rnd/pcntl-signal-manager

e Nicer API
e Object-scoped signal handlers (without memory leaks!)
e Multiple signal handlers for single signal

e Manages previously registered handlers

Soon:
e RepeatingTask API (SIGALRM)
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summary

e PCNTL signal handlers are a quick win
o Reliable
o No business code changes

e |Ifit doesn’t work in your application, there are probably some other issues
o Typically missing timeouts for blocking calls

e Do not combine PCNTL handlers with event-loop based solutions

e Signal handlers are blocking!

e Signal handlers run on top of current execution stack
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Questions?

sli.do/shipmonk
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Thank you!

github.com/shipmonk-rnd


https://github.com/shipmonk-rnd

